3.54 \(\int \frac{(A+C \cos ^2(c+d x)) \sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=146 \[ -\frac{4 (4 A+C) \tan (c+d x)}{3 a^2 d}+\frac{(7 A+2 C) \tanh ^{-1}(\sin (c+d x))}{2 a^2 d}+\frac{(7 A+2 C) \tan (c+d x) \sec (c+d x)}{2 a^2 d}-\frac{2 (4 A+C) \tan (c+d x) \sec (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac{(A+C) \tan (c+d x) \sec (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

((7*A + 2*C)*ArcTanh[Sin[c + d*x]])/(2*a^2*d) - (4*(4*A + C)*Tan[c + d*x])/(3*a^2*d) + ((7*A + 2*C)*Sec[c + d*
x]*Tan[c + d*x])/(2*a^2*d) - (2*(4*A + C)*Sec[c + d*x]*Tan[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A + C)*S
ec[c + d*x]*Tan[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.315835, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {3042, 2978, 2748, 3768, 3770, 3767, 8} \[ -\frac{4 (4 A+C) \tan (c+d x)}{3 a^2 d}+\frac{(7 A+2 C) \tanh ^{-1}(\sin (c+d x))}{2 a^2 d}+\frac{(7 A+2 C) \tan (c+d x) \sec (c+d x)}{2 a^2 d}-\frac{2 (4 A+C) \tan (c+d x) \sec (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac{(A+C) \tan (c+d x) \sec (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + a*Cos[c + d*x])^2,x]

[Out]

((7*A + 2*C)*ArcTanh[Sin[c + d*x]])/(2*a^2*d) - (4*(4*A + C)*Tan[c + d*x])/(3*a^2*d) + ((7*A + 2*C)*Sec[c + d*
x]*Tan[c + d*x])/(2*a^2*d) - (2*(4*A + C)*Sec[c + d*x]*Tan[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A + C)*S
ec[c + d*x]*Tan[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx &=-\frac{(A+C) \sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{(a (5 A+2 C)-3 a A \cos (c+d x)) \sec ^3(c+d x)}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac{2 (4 A+C) \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \left (3 a^2 (7 A+2 C)-4 a^2 (4 A+C) \cos (c+d x)\right ) \sec ^3(c+d x) \, dx}{3 a^4}\\ &=-\frac{2 (4 A+C) \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{(4 (4 A+C)) \int \sec ^2(c+d x) \, dx}{3 a^2}+\frac{(7 A+2 C) \int \sec ^3(c+d x) \, dx}{a^2}\\ &=\frac{(7 A+2 C) \sec (c+d x) \tan (c+d x)}{2 a^2 d}-\frac{2 (4 A+C) \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{(7 A+2 C) \int \sec (c+d x) \, dx}{2 a^2}+\frac{(4 (4 A+C)) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 a^2 d}\\ &=\frac{(7 A+2 C) \tanh ^{-1}(\sin (c+d x))}{2 a^2 d}-\frac{4 (4 A+C) \tan (c+d x)}{3 a^2 d}+\frac{(7 A+2 C) \sec (c+d x) \tan (c+d x)}{2 a^2 d}-\frac{2 (4 A+C) \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [B]  time = 3.12071, size = 484, normalized size = 3.32 \[ -\frac{96 (7 A+2 C) \cos ^4\left (\frac{1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+\sec \left (\frac{c}{2}\right ) \sec (c) \cos \left (\frac{1}{2} (c+d x)\right ) \sec ^2(c+d x) \left (-126 A \sin \left (c-\frac{d x}{2}\right )+42 A \sin \left (c+\frac{d x}{2}\right )-98 A \sin \left (2 c+\frac{d x}{2}\right )-3 A \sin \left (c+\frac{3 d x}{2}\right )+37 A \sin \left (2 c+\frac{3 d x}{2}\right )-63 A \sin \left (3 c+\frac{3 d x}{2}\right )+75 A \sin \left (c+\frac{5 d x}{2}\right )+15 A \sin \left (2 c+\frac{5 d x}{2}\right )+39 A \sin \left (3 c+\frac{5 d x}{2}\right )-21 A \sin \left (4 c+\frac{5 d x}{2}\right )+32 A \sin \left (2 c+\frac{7 d x}{2}\right )+12 A \sin \left (3 c+\frac{7 d x}{2}\right )+20 A \sin \left (4 c+\frac{7 d x}{2}\right )-2 (7 A+10 C) \sin \left (\frac{d x}{2}\right )+(97 A+22 C) \sin \left (\frac{3 d x}{2}\right )-36 C \sin \left (c-\frac{d x}{2}\right )+36 C \sin \left (c+\frac{d x}{2}\right )-20 C \sin \left (2 c+\frac{d x}{2}\right )-18 C \sin \left (c+\frac{3 d x}{2}\right )+22 C \sin \left (2 c+\frac{3 d x}{2}\right )-18 C \sin \left (3 c+\frac{3 d x}{2}\right )+18 C \sin \left (c+\frac{5 d x}{2}\right )-6 C \sin \left (2 c+\frac{5 d x}{2}\right )+18 C \sin \left (3 c+\frac{5 d x}{2}\right )-6 C \sin \left (4 c+\frac{5 d x}{2}\right )+8 C \sin \left (2 c+\frac{7 d x}{2}\right )+8 C \sin \left (4 c+\frac{7 d x}{2}\right )\right )}{48 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + a*Cos[c + d*x])^2,x]

[Out]

-(96*(7*A + 2*C)*Cos[(c + d*x)/2]^4*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c
+ d*x)/2]]) + Cos[(c + d*x)/2]*Sec[c/2]*Sec[c]*Sec[c + d*x]^2*(-2*(7*A + 10*C)*Sin[(d*x)/2] + (97*A + 22*C)*Si
n[(3*d*x)/2] - 126*A*Sin[c - (d*x)/2] - 36*C*Sin[c - (d*x)/2] + 42*A*Sin[c + (d*x)/2] + 36*C*Sin[c + (d*x)/2]
- 98*A*Sin[2*c + (d*x)/2] - 20*C*Sin[2*c + (d*x)/2] - 3*A*Sin[c + (3*d*x)/2] - 18*C*Sin[c + (3*d*x)/2] + 37*A*
Sin[2*c + (3*d*x)/2] + 22*C*Sin[2*c + (3*d*x)/2] - 63*A*Sin[3*c + (3*d*x)/2] - 18*C*Sin[3*c + (3*d*x)/2] + 75*
A*Sin[c + (5*d*x)/2] + 18*C*Sin[c + (5*d*x)/2] + 15*A*Sin[2*c + (5*d*x)/2] - 6*C*Sin[2*c + (5*d*x)/2] + 39*A*S
in[3*c + (5*d*x)/2] + 18*C*Sin[3*c + (5*d*x)/2] - 21*A*Sin[4*c + (5*d*x)/2] - 6*C*Sin[4*c + (5*d*x)/2] + 32*A*
Sin[2*c + (7*d*x)/2] + 8*C*Sin[2*c + (7*d*x)/2] + 12*A*Sin[3*c + (7*d*x)/2] + 20*A*Sin[4*c + (7*d*x)/2] + 8*C*
Sin[4*c + (7*d*x)/2]))/(48*a^2*d*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.069, size = 249, normalized size = 1.7 \begin{align*} -{\frac{A}{6\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{C}{6\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{7\,A}{2\,d{a}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{3\,C}{2\,d{a}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{7\,A}{2\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{C}{d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{A}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}+{\frac{5\,A}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{7\,A}{2\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{C}{d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{A}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{5\,A}{2\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^2,x)

[Out]

-1/6/d/a^2*tan(1/2*d*x+1/2*c)^3*A-1/6/d/a^2*C*tan(1/2*d*x+1/2*c)^3-7/2/d/a^2*A*tan(1/2*d*x+1/2*c)-3/2/d/a^2*C*
tan(1/2*d*x+1/2*c)-7/2/d/a^2*A*ln(tan(1/2*d*x+1/2*c)-1)-1/d/a^2*ln(tan(1/2*d*x+1/2*c)-1)*C+1/2/d/a^2*A/(tan(1/
2*d*x+1/2*c)-1)^2+5/2/d/a^2*A/(tan(1/2*d*x+1/2*c)-1)+7/2/d/a^2*A*ln(tan(1/2*d*x+1/2*c)+1)+1/d/a^2*ln(tan(1/2*d
*x+1/2*c)+1)*C-1/2/d/a^2*A/(tan(1/2*d*x+1/2*c)+1)^2+5/2/d/a^2*A/(tan(1/2*d*x+1/2*c)+1)

________________________________________________________________________________________

Maxima [B]  time = 1.04645, size = 389, normalized size = 2.66 \begin{align*} -\frac{A{\left (\frac{6 \,{\left (\frac{3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{5 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2} - \frac{2 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac{\frac{21 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac{21 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac{21 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}}\right )} + C{\left (\frac{\frac{9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac{6 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac{6 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}}\right )}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*(A*(6*(3*sin(d*x + c)/(cos(d*x + c) + 1) - 5*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a^2 - 2*a^2*sin(d*x +
c)^2/(cos(d*x + c) + 1)^2 + a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) + (21*sin(d*x + c)/(cos(d*x + c) + 1) + s
in(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 21*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^2 + 21*log(sin(d*x + c
)/(cos(d*x + c) + 1) - 1)/a^2) + C*((9*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/
a^2 - 6*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^2 + 6*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a^2))/d

________________________________________________________________________________________

Fricas [A]  time = 1.46977, size = 554, normalized size = 3.79 \begin{align*} \frac{3 \,{\left ({\left (7 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{4} + 2 \,{\left (7 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{3} +{\left (7 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left ({\left (7 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{4} + 2 \,{\left (7 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{3} +{\left (7 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (8 \,{\left (4 \, A + C\right )} \cos \left (d x + c\right )^{3} +{\left (43 \, A + 10 \, C\right )} \cos \left (d x + c\right )^{2} + 6 \, A \cos \left (d x + c\right ) - 3 \, A\right )} \sin \left (d x + c\right )}{12 \,{\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/12*(3*((7*A + 2*C)*cos(d*x + c)^4 + 2*(7*A + 2*C)*cos(d*x + c)^3 + (7*A + 2*C)*cos(d*x + c)^2)*log(sin(d*x +
 c) + 1) - 3*((7*A + 2*C)*cos(d*x + c)^4 + 2*(7*A + 2*C)*cos(d*x + c)^3 + (7*A + 2*C)*cos(d*x + c)^2)*log(-sin
(d*x + c) + 1) - 2*(8*(4*A + C)*cos(d*x + c)^3 + (43*A + 10*C)*cos(d*x + c)^2 + 6*A*cos(d*x + c) - 3*A)*sin(d*
x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**3/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.3645, size = 231, normalized size = 1.58 \begin{align*} \frac{\frac{3 \,{\left (7 \, A + 2 \, C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac{3 \,{\left (7 \, A + 2 \, C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} + \frac{6 \,{\left (5 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2} a^{2}} - \frac{A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + C a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 21 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 9 \, C a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{6}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(3*(7*A + 2*C)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - 3*(7*A + 2*C)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a
^2 + 6*(5*A*tan(1/2*d*x + 1/2*c)^3 - 3*A*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^2*a^2) - (A*a^4*t
an(1/2*d*x + 1/2*c)^3 + C*a^4*tan(1/2*d*x + 1/2*c)^3 + 21*A*a^4*tan(1/2*d*x + 1/2*c) + 9*C*a^4*tan(1/2*d*x + 1
/2*c))/a^6)/d